Search results for "Gaussian Markov random fields"

showing 3 items of 3 documents

[IC‐P‐029]: GAUSSIAN MARKOV RANDOM FIELDS FOR ASSESSING INTERMODAL REGIONAL ASSOCIATIONS IN PRODROMAL ALZHEIMER's DISEASE

2017

Psychiatry and Mental healthCellular and Molecular NeuroscienceDevelopmental NeuroscienceEpidemiologyHealth PolicyNeurology (clinical)DiseaseGeriatrics and GerontologyGaussian markov random fieldsPsychologyDevelopmental psychologyCognitive psychologyAlzheimer's & Dementia
researchProduct

On the convenience of heteroscedasticity in highly multivariate disease mapping

2019

Highly multivariate disease mapping has recently been proposed as an enhancement of traditional multivariate studies, making it possible to perform the joint analysis of a large number of diseases. This line of research has an important potential since it integrates the information of many diseases into a single model yielding richer and more accurate risk maps. In this paper we show how some of the proposals already put forward in this area display some particular problems when applied to small regions of study. Specifically, the homoscedasticity of these proposals may produce evident misfits and distorted risk maps. In this paper we propose two new models to deal with the variance-adaptiv…

Statistics and ProbabilityHeteroscedasticityMultivariate statisticsComputer scienceDiseaseJoint analysisMachine learningcomputer.software_genreBayesian statistics01 natural sciencesGaussian Markov random fields010104 statistics & probability03 medical and health sciences0302 clinical medicineHomoscedasticity0101 mathematicsMultivariate disease mappingSpatial analysisMortality studiesInterpretation (logic)Spatial statisticsbusiness.industryBayesian statisticsEstadística bayesianaMalalties030211 gastroenterology & hepatologyArtificial intelligenceStatistics Probability and Uncertaintybusinesscomputer
researchProduct

On the use of adaptive spatial weight matrices from disease mapping multivariate analyses

2020

Conditional autoregressive distributions are commonly used to model spatial dependence between nearby geographic units in disease mapping studies. These distributions induce spatial dependence by means of a spatial weights matrix that quantifies the strength of dependence between any two neighboring spatial units. The most common procedure for defining that spatial weights matrix is using an adjacency criterion. In that case, all pairs of spatial units with adjacent borders are given the same weight (typically 1) and the remaining non-adjacent units are assigned a weight of 0. However, assuming all spatial neighbors in a model to be equally influential could be possibly a too rigid or inapp…

Multivariate statisticsEnvironmental EngineeringMultivariate analysisSpatial weights matrixInferenceProcessos estocàsticsContext (language use)Adaptive conditional autoregressive distributionsEstadísticaGaussian Markov random fieldsMatrix (mathematics)StatisticsMalaltiesEnvironmental ChemistryAdjacency listSpatial dependenceMultivariate disease mappingSafety Risk Reliability and QualityRandom variableGeneral Environmental ScienceWater Science and TechnologyMathematics
researchProduct